37 research outputs found

    Stability boundary approximation of periodic dynamics

    Full text link
    We develop here the method for obtaining approximate stability boundaries in the space of parameters for systems with parametric excitation. The monodromy (Floquet) matrix of linearized system is found by averaging method. For system with 2 degrees of freedom (DOF) we derive general approximate stability conditions. We study domains of stability with the use of fourth order approximations of monodromy matrix on example of inverted position of a pendulum with vertically oscillating pivot. Addition of small damping shifts the stability boundaries upwards, thus resulting to both stabilization and destabilization effects.Comment: 9 pages, 2 figure

    The HIF1A gene Pro582Ser polymorphism in Russian strength athletes

    Get PDF
    Hypoxiainducible factor-1a (encoded by HIF1A gene) controls a number of genes that are implicated in various cellular functions including glycolysis and cell proliferation and differentiation. The rs11549465 C > T polymorphism in the HIF1A gene, which produces the amino acid substitution Pro582Ser, increases protein stability and transcriptional activity and, therefore, improves glucose metabolism. The aim of our study was to investigate the association between the HIF1A Pro582Ser polymorphism and elite strength athlete status. A total of 208 Russian strength athletes (122 weightlifters and 86 wrestlers) of regional or national competitive standard and 1,413 controls were genotyped using the polymerase chain reaction-restriction fragment length polymorphism method. We found that the frequency of the HIF1A 582Ser variant was significantly higher in weightlifters (13.1%, p = 0.0031) and wrestlers (15.7%, p = 0.0002) compared with the controls (7.5%). Additionally, the highest (21.1%, p = 0.0052) frequency of the 582Ser variant was found in a group of elite strength athletes. Thus, our study provides evidence for an association between the HIF1A gene Pro582Ser polymorphism and elite strength athlete status. Although more replication studies are needed, the preliminary data suggest an opportunity to use the analysis of HIF1A polymorphism along with other gene variations and standard phenotypic assessment in sports selection

    Athlome Project Consortium: a concerted effort to discover genomic and other "omic" markers of athletic performance.

    Get PDF
    Despite numerous attempts to discover genetic variants associated with elite athletic performance, injury predisposition, and elite/world-class athletic status, there has been limited progress to date. Past reliance on candidate gene studies predominantly focusing on genotyping a limited number of single nucleotide polymorphisms or the insertion/deletion variants in small, often heterogeneous cohorts (i.e., made up of athletes of quite different sport specialties) have not generated the kind of results that could offer solid opportunities to bridge the gap between basic research in exercise sciences and deliverables in biomedicine. A retrospective view of genetic association studies with complex disease traits indicates that transition to hypothesis-free genome-wide approaches will be more fruitful. In studies of complex disease, it is well recognized that the magnitude of genetic association is often smaller than initially anticipated, and, as such, large sample sizes are required to identify the gene effects robustly. A symposium was held in Athens and on the Greek island of Santorini from 14-17 May 2015 to review the main findings in exercise genetics and genomics and to explore promising trends and possibilities. The symposium also offered a forum for the development of a position stand (the Santorini Declaration). Among the participants, many were involved in ongoing collaborative studies (e.g., ELITE, GAMES, Gene SMART, GENESIS, and POWERGENE). A consensus emerged among participants that it would be advantageous to bring together all current studies and those recently launched into one new large collaborative initiative, which was subsequently named the Athlome Project Consortium

    Millisecond dynamics of an unlabeled amino acid transporter

    Get PDF
    Excitatory amino acid transporters (EAATs) are important in many physiological processes and crucial for the removal of excitatory amino acids from the synaptic cleft. Here, we develop and apply high-speed atomic force microscopy line-scanning (HS-AFM-LS) combined with automated state assignment and transition analysis for the determination of transport dynamics of unlabeled membrane-reconstituted GltPh, a prokaryotic EAAT homologue, with millisecond temporal resolution. We find that GltPh transporters can operate much faster than previously reported, with state dwell-times in the 50 ms range, and report the kinetics of an intermediate transport state with height between the outward- and inward-facing states. Transport domains stochastically probe transmembrane motion, and reversible unsuccessful excursions to the intermediate state occur. The presented approach and analysis methodology are generally applicable to study transporter kinetics at system-relevant temporal resolution

    Agricultural uses of plant biostimulants

    Get PDF
    corecore